

DGT as a Field Sampling Tool for Porewater Mercury and Methylmercury

Paul Bireta University of Texas at Austin Danny Reible, Ariette Schierz Texas Tech University Rich Landis Dupont

Outline

- Porewater sampling techniques
- DGT Theory and Background
- DGT Field Applications
 - Time-Integrated Sampling
 - Measuring Remedy Effectiveness
 - Mercury Behavior in River Banks and Sediments

Mercury Conceptual Model

- Dissolved mercury is available to microbes for methylation
- Bulk solid mercury is not a good measure for methylation potential of the system
- To reduce methylation, control solid phase sorption or aqueous speciation

Solid phase sorption

Aqueous Speciation

Porewater Sampling Techniques

- Active sampling techniques
 - Centrifugation and Filtration
 - Displacement
 - Direct water sampling (Henry sampler)
- Passive sampling techniques
 - Diffusive gradient in thin films (DGT)
 - Advantages
 - Minimal disturbance
 - No suspension of particles
 - Maintain redox conditions
 - Flexible Placement
 - Vertical Resolution

Henry Sampler Porewater

Henry Sampler- Conventional porewater sampler

Location	THg Unfiltered (ng/L)	THg Filtered (ng/L)
А	2300	1
В	310,000	301
С	72,000	2.5

- Conventional porewater samples filtered <0.1% of unfiltered
 - Compared to 10-60% in surface water

DGT Background

- Davison & Zhang Lancaster, UK
- Based on Fick's 1st Law of Diffusion
 - Measures flux, not an equilibrium device

$$J = -D \frac{\partial \varphi}{\partial x} \qquad \qquad D = \frac{DC_b}{\Delta g} \qquad D = \frac{M\Delta g}{DtA}$$

Diffusion of metal = to that in pure water

DGT in sediments

DGT theory also applicable to sediments
 Difference is solid phase influence

 Pseudo steady state achieved in ~ day deployments times

DGT for Hg/MeHg Measurement

- Resin
 - 3-mercaptylpropyl funtionalized silica gel resin
 - Acrylamide gel base
- Diffusion layer
 - Agarose gel
- Filter Layer
 - 0.45 µm polysulfone

DGT Fabrication Procedure

- DGT are fabricated at Texas Tech
- Deployed in sediment/water for ~2days
- Analysis performed at Texas Tech
 - Depth profilers sectioned at 1-2cm intervals
 - Resin split for TotHg/MeHg
 - TotHg resin is eluted in HCI and analyzed by EPA 1631
 - MeHg resin is eluted in HCI/Thioreau and analyzed by EPA 1630

South River Background

- Legacy mercury contamination from industrial source
- Large amount of traditional sampling
 - Biota, sediments, soils, surface water, groundwater
- Goal was to use diffuse gradient in gel-thin film (DGT) samplers to measure surface water and in-situ porewater mercury and methylmercury

Time Integrated Sampling

- Concentration calculated is an average over the deployment time
 - Can capture variations over sampling interval

Water Column Sampling

- Autosampler and DGT deployed in a river for 48 hours
- Autosampler measured an average concentration of 13.9 ng/L
- DGT Measured an average concentration of 15.3 ng/L

Measuring Remedy Effectiveness

- Goal of remediation is to lower mercury levels in biota
- Sediment amendment does this by lowering the amount of available mercury through sorption
- DGT allow for a chemical measurement of remedy effect instead of just endpoints

Biochar Sediment Amendment

- Pilot site was a 2-year floodplain pond, adjacent to the South River, Virginia, USA
- Pond was divided and Biochar amendment was applied to one side
 Amended Cell
 Control Cell

Sampling

- DGT sampling was conducted at 0, 4, 16 weeks and ~10 months
 - 3 amended and 3 control locations
 - 18 samples from each sampling event
- Conventional Sampling performed in parallel
 - Included surface water, sediment porewater (Henry samplers), bulk sediment and biota
 - Analyzed for TotHg and MeHg

DGT Sampling

- Data from sediment
 porewater 0-4 cm
- Higher concentrations in area to be amended initially
- Decrease at surface over time in amended
- Control approximately constant

% Reduction in Total Mercury

Treatment	SE1	SE2	SE3
Control	-	.23	.28
Amended	-	.80	.53

Conventional Sampling

- Filtered porewater data is significantly lower than DGT
 - Very close to filtered surface water
- Porewater collected with Henry samplers
 - Dilution of porewater samples?

Mercury Behavior in River Banks and Sediments

- Terrestrial soil is a major source of mercury to the river
 – River banks are interface
- More accurate measurements in channel and bank sediments
 - Improve understanding of how banks and sediments influence mercury cycling in the river

Site Conceptual Model

Brent, R. N. (2013). *Conceptual Model of the South River, VA*. James Madison University.

Baseline Data

- DGT Field Sampling Conducted 2010-2014
- Three areas of the river were sampled
 - Source area, upstream, downstream
- Consistent results 2010-2012
 - Always sampled at baseline flow

May 2013 Flood Event

- Sampling event occurred during a high flow event (~3000 cfs)
- DGTs deployed just after the high flow crested
 - Measured mercury behavior in banks during declining stage

May/July 2013 Data

May/July 2013 Data

May 2014 Sampling

- Sampling conducted at baseline flow and declining stage, ~3 days apart
- Peak flow ~1000 cfs
- DGT samplers deployed during both flow regimes

May 2014 Data

THE UNIVERSITY OF TEXAS

Mercury Behavior in River Banks and Sediments

- DGT able to capture major differences in mercury behavior
 - Large concentration range
- DGT able to give vertical resolution
 - Not bulk sample
- Small sampler size allow placement in difficult sampling environments

Conclusions

- DGT can effectively measure low and high level mercury concentrations
 - PDL: 10 ng/L, depending on sampling parameters
 - Wide range of concentrations can be measured with same samplers, but can tailored for specific ranges
- More direct chemical measurement that sampling biota
 - Important for understanding remediation mechanisms
- DGT samplers give flexibility in sampling
 - Vertical resolution in a narrow space
- Related Talk: Validation of Diffusive Gradient in Thinfilms Technique for Mercury and Methylmercury
 - Thursday, 11am. Dr. Ariette Schierz

Acknowledgements

- DuPont
- South River Science Team

The University of Texas at Austin

UNTAIND

